One-Bit Compressive Sensing with Partial Support Information
نویسنده
چکیده
This work develops novel algorithms for incorporating prior-support information into the field of One-Bit Compressed Sensing. Traditionally, Compressed Sensing is used for acquiring high-dimensional signals from few linear measurements. In applications, it is often the case that we have some knowledge of the structure of our signal(s) beforehand, and thus we would like to leverage it to attain more accurate and efficient recovery. Additionally, the Compressive Sensing framework maintains relevance even when the available measurements are subject to extreme quantization. Indeed, the field of One-Bit Compressive Sensing aims to recover a signal from measurements reduced to only their sign-bit. This work explores avenues for incorporating partial-support information into existing One-Bit Compressive Sensing algorithms. We provide both a rich background to the field of compressed sensing and in particular the one-bit framework, while also developing and testing new algorithms for this setting. Experimental results demonstrate that newly proposed methods of this work yield improved signal recovery even for varying levels of accuracy in the prior information. This work is thus the first to provide recovery mechanisms that efficiently use prior signal information in the one-bit reconstruction setting.
منابع مشابه
Limits on Support Recovery with Probabilistic Models: An Information-Spectrum Approach
The support recovery problem consists of determining a sparse subset of a set of variables that is relevant in generating a set of observations, and arises in a diverse range of settings such as group testing, compressive sensing, and subset selection in regression. In this paper, we take a unified approach to support recovery problems, considering general probabilistic observation models relat...
متن کامل1-Bit Compressive Sensing: Reformulation and RRSP-Based Recovery Theory
The 1-bit compressive sensing has been studied recently in the field of sparse signal recovery. Since the amplitude information of sparse signals in 1-bit models is not available, the solution to the 1-bit models is no longer unique in general. As a result, the aim of 1-bit compressive sensing is to recover the signal within a positive scalar factor by using some decoding methods. In this paper...
متن کاملPinball Loss Minimization for One-bit Compressive Sensing
The one-bit quantization can be implemented by one single comparator, which operates at low power and a high rate. Hence one-bit compressive sensing (1bit-CS) becomes very attractive in signal processing. When the measurements are corrupted by noise during signal acquisition and transmission, 1bit-CS is usually modeled as minimizing a loss function with a sparsity constraint. The existing loss ...
متن کاملOne-Bit Compressive Sensing of Dictionary-Sparse Signals
One-bit compressive sensing has extended the scope of sparse recovery by showing that sparse signals can be accurately reconstructed even when their linear measurements are subject to the extreme quantization scenario of binary samples—only the sign of each linear measurement is maintained. Existing results in one-bit compressive sensing rely on the assumption that the signals of interest are s...
متن کاملFeedback Reduction of Spatially Multiplexed MIMO Systems Using Compressive Sensing
In this paper we analyze spatially multiplexed MIMO systems with limited Channel State Information (CSI) and zero forcing (ZF) linear signal detection technique. Two schemes were considered: Quantization Codebook (QC) and Compressive Sensing (CS). Compressive Sensing is used to generate a reduced CSI feedback to the transmitter in order to reduce feedback load into the system. Performance of th...
متن کامل